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Stochastic Ising Models and Anisotropic 
Front Propagation 
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We study lsing models with general spin-flip dynamics obeying the detailed 
balance law. Alter passing to suitable macroscopic limits, we obtain interfaces 
moving with normal velocity depending anisotropically on their principal 
curvatures and direction. In addition we deduce (direction-dependent) Kubo- 
Green-type formulas for the mobility and the Hessian of the surface tension, 
thus obtaining an explicit description of anisotropy in terms of microscopic 
quantities. The choice of dynamics affects only the mobility, a scalar function of 
the direction. 

KEY WORDS:  Ising model with general spin flip dynamics: interfaces: 
anisotropy; motion by curvature, Kubo-Green formulas for mobility and sur- 
face tension. 

INTRODUCTION 

In this paper we consider the mesoscopic and macroscopic behavior of 
stochastic Ising models with long-range interactions and general spin-flip 
dynamics. We derive a mean-field equation as the interaction range tends 
to infinity (mesoscopic limit-grain coarsening), we study its asymptotic 
behavior, and we show that it yields a front moving with normal velocity 
which is an anisotropic function of the principal curvatures. This function 
is actually described by a Kubo-Green-type formula which also specifies 
the relationship between the mobility and the surface tension of the moving 
interface. Finally we study macroscopic limits for the particle system. We 
show that, for a continuum of appropriate scalings, the particle system 
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yields in the limit a front moving with the same normal velocity as the one 
governing the asymptotics of the mean-field equation. 

Our asymptotic results are stated and proved in this paper up to the first 
time the underlying motion develops singularities. They can, however, be 
extended to hold globally in time, i.e., past the first time the evolving front 
develops singularities. This is done in a forthcoming paper by Barles and 
SouganidisJ ~j The results of our paper allow for the better understanding of 
the relationship between the phenomenological and microscopic theories of 
phase transition in the general setting where anisotropies are present. They 
may also be thought of as providing a theoretical justification for the Monte 
Carlo simulations performed by physicists to compute moving fi'onts. 

The paper is organized as follows: In Section 1 we briefly discuss the 
phenomenological and microscopic theories to model phase transitions, 
recall some recent results about them, and set the ground for the results of 
this paper, which we present and discuss in Section 2. Section 3 is devoted 
to the proofs. 

1. P H E N O M E N O L O G I C A L  A N D  M I C R O S C O P I C  T H E O R I E S  OF 
P H A S E  T R A N S I T I O N S  

Distinct thermodynamic phases in disequilibrium are in general 
separated by sharp transition regions (interfaces) where an order parameter 
changes rapidly from one phase to another. The modeling of phase transi- 
tions is mainly approached by either phenomenological or microscopic 
theories. Below we briefly describe these two types of modeling for noncon- 
servative, isothermal, two-phase systems in the presence of anisotropies. 

In the phenomenological approach models are divided roughly into 
two categories. The first one is about macroscopic, sharp interface models, 
derived by continuum mechanics arguments (see Gurtin ~2~ and references 
therein), where interfaces are represented as ( N - 1  )-dimensional hypersur- 
faces in R u evolving with a prescribed normal velocity V given by 

V=v(n, K t ..... Xx-I) (I.I) 

Here n is the normal vector and h'a ..... xN_ ~ are the principal curvatures of 
the evolving interface F,. The function v in (1.1) is specified by a set of con- 
stitutive relations. An example arising in the isotropic case which captures 
many important features of this class of hypersurface evolutions is the 
motion by mean curvature, where the normal velocity V of F, is propor- 
tional to its mean curvature, i.e., 

N - - I  

V = - p a  ~ x~ (1.2) 
i = 1  
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The constants cr and/t are related to the interfacial energy and the mobility 
of the interface, respectively. 

The hypersurfaces { F,}, I>o may develop singularities, change topologi- 
cal type, and exhibit various other pathologies even when the initial set Fo 
is smooth. A great deal of work has been done in order to interpret (1.1) 
past singularities. A rather general approach to provide a weak formulation 
for the motion past singularities, known as the level-set approach, was 
introduced for numerical computations by Osher and Sethian c3~ and was 
developed rigorously by Evans and Spruck ~41 for (1.2) and by Chen et al. ~s) 
for more general geometric evolutions including (1.1)--see also Barles 
et al., ~6~ Goto, ~7~ and Ishii and Souganidis. ~81 

In the level-set approach the evolving set F, is represented as the zero- 
level set of an auxiliary function u, i.e., / ' , =  {x: u(x, t )=0} ,  which solves 
the geometric pde 

ttt=f(Du, D2u) in ~Nx(0, 00) (1.3) 

where, for X~CJ N, the set of N x N  symmetric matrices, and pERN\{0}, 
F is related to v in (1.1) by 

F(p, X ) =  - I P l - '  v(p, X ( I - p |  

with 

f f = I P I - ' P  

In the special case of (1.2) the geometric pde has the form 

u , = p a t r ( ( I - - D u |  in RNx(0, o0) 

Nonlinear, singular, degenerate parabolic equations like (1.3) typically 
have only weak solutions, known as viscosity solutions. This nevertheless 
allows us to define a unique weakly propagating interface F, as the zero- 
level set of the viscosity solution of (1.3), globally in time, past possible 
singularities. 

AnotHer way to define a weakly propagating front using the properties 
of the signed distance function was introduced by Soner ~91 for motion 
governed by (1.1) and later extended by Barles et al. ~9) 

Finally, recently Barles and Souganidis ~1 put forward yet another 
equivalent way to describe the weak front propagation. This new approach, 
which is based on defining maximal and minimal evolutions using smooth 
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surfaces evolving by approximately the same law as test surfaces (barriers) 
from inside and outside (see ref. 1 for the details), is fundamental in under- 
standing and justifying the appearance of moving interfaces globally in time 
in anisotropic regimes like those in this paper. 

A second class of phenomenological models relates to the long-time 
behavior of order parameters which solve Ginzburg-Landau-type equa- 
tions and vary continuously between two distinct phases of the material. 
In such models there is a narrow transition region separating the two 
different phases instead of sharp interfaces. In this framework Allen and 
Cahn c~~ proposed the asymptotic limit of the rescaled reaction-diffusion 
equation 

v':,-paAv':+e-2f{v':)=O in R^'x(O, oo) (1.4) 

wheref(r) = 2pr(r -~- i"), as a model for the motion of antiphase boundaries 
in polycrystalline materials. Formal results (see, for example, refs. 10, 11) 
have indicated that these interfaces move with prescribed normal velocity 
proportional to their mean curvature. Evans et aU ~2~ proved rigorously this 
conjecture by showing that in the asymptotic limit e--* 0 the solutions of 
(1.4) develop interfaces moving by mean curvature in the viscosity sense 
with the result being valid globally in time, i.e., past singularities. (See also 
refs. 1 and 6 for more general results and Souganidis I j3" ~4~ for a general 
survey of the subject.) 

Nonequilibrium statistical mechanics theories provide a microscopic 
approach to the modeling of phase transitions using interacting particle 
systems (IPS), which are Markov processes set on the lattice ~N. One 
distinguishes between stochastic Ginzburg-Landau models where the order 
parameter takes continuous values and Ising spin systems with either ( + )  
or ( - )  spins at each lattice site. Here we only consider the latter type of 
model with general spin-flip dynamics. Stochastic Ising systems, which 
describe phase transitions, (+) ' s  being converted to ( - ) ' s  and vice versa, 
starting from an initial state of disequilibrium, are jump Markov processes 
{a,},z o taking values in the configuration space X =  { - 1 ,  1} Z'~. A con- 
figuration a =  {a(x)e { - 1 ,  1}, xe77 'v} is updated by a sequence of spin 
flips, i.e., when a spin changes sign at a site x with a rate c(x, a) depending 
on an interaction potential J. (See the next section for the detailed descrip- 
tion of the model.) 

For the stochastic Ising models there exists a mesoscopic space scaling 
(grain coarsening) giving rise, through the respective BBGKY hierarchies, 
to deterministic equations. Such mesoscopic (mean-field) equations 
describe the limiting evolution of the average magnetization Ea,(x). In the 
case of Glauber dynamics with radially symmetric potentials J, De Masi 
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et al. ~ tsj obtained, in the mean-field limit as the interaction range tends to 
infinity, the fully nonlinear nonlocal equation 

m , + m - t a n h f l ( J . m ) = O  in ~Nx [-0, O0) (1.5) 

where J �9 m denotes the usual convolution in R N. 
The Allen-Cahn equation (1.4) may be viewed as a mesoscopic equa- 

tion for a suitable IPS. Indeed, De Masi et al. ~'61 derived (1.4), with e = l, 
from an IPS with Glauber-Kawasaki (G + K) dynamics, i.e., a stochastic 
system evolving under the combined influence of slow spin flips (Glauber 
dynamics) and fast spin exchanges (Kawasaki dynamics). 

Some aspects of the complex relations among the above micro-, 
meso-, and macroscopic models for phase transitions were explored by us 
in refs. 17 and 18, where we rigorously derived phenomenological pde's 
describing evolving phase boundaries, e.g., (1.3), from interacting particle 
systems. In ref. 17 we studied an IPS with Glauber-Kawasaki dynamics, 
proving that there is a continuum of suitable scaling of time and space 
such that in the limit the sites of the spin system separate into clusters of 
( + )  and ( - ) ,  whose boundaries move toward equilibrium according to 
he mean curvature rule. In ref. 18 we investigated the macroscopic limit 
of an appropriately rescaled stochastic Ising model with long-range inter- 
actions evolving with Glauber dynamics as well as rescalings of the 
corresponding mesoscopic equation (1.5). In both scales we obtained an 
interface evolving with normal velocity /lax, where x is the mean cur- 
vature and 0 = p a  is a transport coefficient. The novelty of the results in 
ref. 18, besides dealing with a fully nonlinear, nonlocal mesoscopic equa- 
tion, is the identification of 0, through a homogenization technique, yield- 
ing an effective Green-Kubo-type formula. The transport coefficient 
appears neither at the microscopic level, i.e., the particle system, nor at 
the level of the mesoscopic equation and it is actually the outcome of an 
averaging effect taking place during the limiting process. All the above 
results are again valid globally in time, the motion of the interface being 
interpreted in the viscosity sense after the onset of the geometric 
singularities. Moreover, the "propagation-of-chaos" property holds 
globally for both models. In the case of the Glauber-Kawasaki dynamics 
we obtained in addition that the resulting interfaces are varifolds evolving 
by their mean curvature in the Brakke sense, which eliminates some of 
the nuisance due to the possible interface fattening (see, for example, refs. 
6 and 17). Concluding this discussion, we would like to underline the 
critical role played by the mesoscopic equations (1.4) and (1.5) and their 
asymptotics in the rigorous transition from the IPS to the macroscopic 
equations. 
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Our objective in this work is to study how anisotropy is manifested in 
the transition from microscopic to macroscopic models. To account for 
anisotropies in the Ising model we replace the assumption of the radial 
symmetry of the interaction potential by the requirement that J is even. 
The continuum theory (see ref. 2 and references therein) suggests that, in 
the absence of faceting phenomena and for stable (strictly convex) interfa- 
cial energies H, the evolution of the phase boundaries { F,} ,~o is governed 
by the geometric equation 

u, =#(Du) tr[A(Du) D 2 u ( I - - D u |  in ~Nx (0, (30) (1.6) 

with F, = {r E RN: u(r, t) = 0}, where A = D2H. The direction-dependent 
scalar/~ is the mobility of the interface and H a positively homogeneous of 
degree one function. Notice that in the isotropic case where H ( e ) = a  ]el, 
(1.6) simply reduces to motion by mean curvature. 

Our goal here is to derive rigorously such equations from Ising models 
with general spin-flip dynamics and at the same time provide a Green- 
Kubo formula for the direction- and dynamics-dependent mobility/~(e) as 
well as the Hessian of the interracial energy H(e). 

We conclude this section noting that Spohn ~'9~ has also derived 
(formally) Green-Kubo formulas for the mobility and the interfacial 
energy, using corresponding microscopic definitions, bypassing the issue of 
the macroscopic equation. Furthermore Butta t2~ proved the validity of an 
Einstein relation for the transport coefficient of the isotropic mean cur- 
vature evolution. An approach similar to ours was taken in the physics 
literature by a number of authors--see, for example, Vvedensky et al., ~'-'' 
Krug et al., ~22~ and references therein--where the macroscopic equation 
along with the Green-Kubo formulas are directly derived from the micro- 
scopic dynamics. These works primarily refer to conservative dynamics 
(spin exchange dynamics) where, in addition, surface diffusion may enter in 
the macroscopic equations. Such questions have been addressed in a series 
of papers by Giacomin and Lebowitz, ~23-251 who studied phase segregation 
dynamics in particle systems with local mean-field interactions and 
obtained formally interface evolution laws similar to the ones obtained in 
the analogous limit for the Cahn-Hilliard equations. 

Finally, we note that the results of this paper were already announced 
in Souganidis. ~'3' ,4~ 

2. THE M A I N  RESULTS 

We begin with a description of general ferromagnetic Ising models, i.e., 
spin systems interacting by nonnegative symmetric (even) Kac potentials 
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and evolving with general spin-flip dynamics. For a much more detailed 
discussion, at least for Glauber dynamics, we refer, for example, to the 
papers by De Masi et alJ'Sl and Comets t26~ and the references therein. 

The energy H of the particle system, evaluated at a configuration a, is 
given by 

H(a) = ~ Jy(x, y) cr(x) a(y) +h ~. tr(x) 
xv~), 

where h is attributed to an external magnetization field and J~, is the Kac 
potential defined by 

J~.(x, y)=TUJ(7(x-- y)) (X, yeT/N) (2.1) 

7 - '  > 0 being the interaction range. Here J: R N ~  R is assumed to be such 
that 

J~.CI([~N), J(r)=J(-r)>~O 

J ( r )=O for Irl>R forsome R > 0  (2.2) 

The assumption that J has compact support is made only to simplify the 
arguments below and can be easily removed by specifying appropriate 
growth assumptions on J at infinity. We leave this task to the interested 
reader. The assumption that J is nonnegative is an important one from 
the physical point of view, since it implies that the Ising model is ferro- 
magnetic. 

The dynamics of the model consists of a sequence of flips. If a is the 
configuration before a flip at x, then after the flip at x the configuration is 

ff(tr(x) if y = x  
a"(y)= Y) if y r  

We assume that a flip occurs at x, when the configuration is a, with a rate 
c~.(x, t7), given by 

c,,(x, a)= ~(-f l (H(tr")-  H(a))) (2.3) 

where fl > 0 is identified with the inverse temperature, H(a X) -H(a)  is the 
change in the energy due to a spin flip at x, and gt: R ~ (0, oo) is a locally 
Lipschitz continuous function satisfying the detailed balance law (or rever- 
sibility condition) 

~(r) = ~g(-r)  e-"  ( re  R) (2.4) 
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Typical choices of ~U's are ~U(r )=( l+e" )  - t  (Glauber dynamics), 
~U(r) = e  -'/2 (Arrhenius dynamics), or ~U(r)=e - '+ (Metropolis dynamics). 
Dynamics obeying (2.4) leave the underlying Gibbs measures, which are 
associated with the Hamiltonian H and the inverse temperature fl, 
invariant. 

The underlying process is a jump process on L~-(X; R) with generator 
given by 

Lrf(cr ) = ~ cr(x , o')[f(o " ' ' ) ) - f ( o ' ) ]  
x ~  TpN 

A very basic question in the theory of stochastic Ising models with 
Kac potentials is the behavior of the system as the interaction range tends 
to infinity, i.e., in the limit 7 ~ 0. The passage in the limit 7 ~ 0, which in 
the physics literature is identified with grain coarsening, of quantities like 
the thermodynamic pressure, total magnetization, etc., is known as the 
Lebowitz-Penrose limit (see, for example, refs. 27-29). 

Along these lines we study the asymptotics as 7 ~ 0 of the averaged 
magnetization 

mr(x, t )= ~_i,rcrt(x), (x, t) E77Nx [0, o0) (2.5) 

of the system, where Et,,. denotes the expectation of the IPS starting from 
a measure ~'. 

The relevant mesoscopic mean-field equation is 

m , + ~ ( f l ( J . m + h ) ) [ m - t a n h f l ( J . m + h ) ] = O  in ~ N x F 0  , OO) (2.6) 

where 

q~(r) = 5u( --2r)(1 + e-=") (2.7) 

Notice that for Glauber dynamics ~(r)  = 1 and (2.6) reduces to Eq. (1.5), 
studied, at least for radial potentials, in refs. 15 and 18. In fact, following 
the techniques of ref. 15, we can prove the following theorem: 

T h e o r e m  2 . 1 .  Assume that the IPS defined earlier has an initial 
measure a product measure/~ '  such that, for x e 2vN, Et,,.(a(x)) = mo(7X), 
where mo is Lipschitz continuous, and that (2.2) holds. Then, for each 
n ~ Z  +, 

lim sup a,(x~) - m(yxs, t) = 0  
7'- o .,.~ z;, ~ J = t 

where m is the unique solution of (2.6) with initial datum m o. 
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In the above statement and henceforth, for each n, 

N 77 ={~x'=(Xl ..... X,,)e7/N: x , #  .. .  Cx,,} 

Next we review some basic properties of (2.6). To this end, assume that 

fl > flr = (]) - '  (2.8) 

where 

] =  f J(r) dr 

It follows easily that there exists some ho > 0 such that, if ]h] < ho, then 
(2.6) has three steady solutions ,n~7- <,n~'ic_'<m~i +, which are the solu- 
tions of the algebraic equation x = t a n h ( f l ( J x + h ) ) .  Note that the steady- 
state solutions are independent of q~ and, when h = 0, m~' i + =  +_ m/~ and 

/ t  0 m/i --0. It also turns out that (2.6) admits a comparison principle stated 
in the following lemma, under an additional hypothesis, which is, however, 
satisfied by the Arrhenius, Glauber, and Metropolis dynamics. Its proof is 
rather elementary and we will leave it as an exercise. 

Lemma 2.2. (i) Assume (2.2) and let m be a solution of (2.6) with 
initial datum too. Then, for all t > 0, Ira(., t)l ~< Ilmo II on R u. 

(ii) Assume that r is locally Lipschitz continuous and that, for all 
- - h ,  - -  - h m e  [m~i ,m~i +] and r e  [flJm/~ , flJmTi +], 

r F - - ~ ( r + f l h ) ( m - t a n h ( r + f l h ) )  is nonincreasing in r (2.9) 

If m~,m2 are solutions of (2.6) and rnl(- , 0)~<m,_(., 0) on R N, then 

m l ( . , t ) ~ m 2 ( . , t )  on ~N 

It also turns out - -and this is crucial for our analysis below--that, for 
sufficiently small ]hi, (2.6) admits, for each e e S N- t, the unit sphere in NN, 

h . -  and special traveling wave solutions in the direction e connecting m/~ 
m~' i +, with speed ch(e), i.e., solutions of the form 

re(r, t) = qh(r. e + ch(e) t, e) 

where qh solves the fully nonlinear integral-differential equation 

ch( e ) (th( ~, e) + qb( fl( J . qh + h))[qh(~, e) -- tanh fl( J �9 ql,( ~, e) + h)] = 0 

(2.10) 
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Above and henceforth we write, for all (~, e)~ ~Nx ~N\{0}, 

j ,  qh(~, e) = f J(r') qh(~ + r' e, e) dr' 

In addition qh satisfies, for appropriate positive constants 2h+(e) and 
a"+(e), 

qh(___c~, e) =m~" -+, qh(0 ' , h, 0 el = mtj , dth(~_, e) > 0 

lim exp(2h+(e)l~.[)[q"(~,e)--[m~i + -I-ah_+(e)exp( 2"_ e - +( )1 1)]1=0 
(2.11) 

It follows that the domain of qh can be extended from R x S N- r to 
by 

qh(~, e ) =  qh(lel-t ~, ~) (2.12) 

It also turns out, as we explain below, that 

D,.qh(~, e) is continuous in R • Wv\{0} (2.13) 

Finally, 

if h = 0 ,  then c~  and qO is odd in ~ (2.14) 

i.e., the traveling wave is a standing wave. 
The existence and stability of such qh, when J is isotropic, i.e., 

J ( r )=J( I r l ) ,  was studied by De Masi et alJ 3~ when h = 0  and Bates et 
al. ~sL~ in general. For a detailed study of traveling wave solutions of (2.6) 
in the presence of an external field but always in the isotropic case, we also 
refer to the papers by De Masi et al. ~32~ and Orlandi and Triolo. ~ As one 
can see immediately, in the isotropic case the standing and traveling wave 
solutions are independent of the direction e. 

The anisotropic case is, however, dramatically different. The standing 
wave solutions of (2.6) are expected to depend on the direction, as the next 
simple example indicates. Of course, this is the novelty here! 

Assume that h = 0 ,  J=�88215 for some ~ > 0 ,  where 1,r is 
the characteristic function of the set A. Substituting in (2.10), we 
immediately see that 

q~ and q~ l ) ) = q ( a  '~) 

where q(~)=rn/~tanh(flm/j~) is the direction-independent standing wave 
corresponding to J =  �89 ~, i1. (See ref. 30 for this last statement.) 



Stochastic Ising Models 73 

It should also be noted that the dependence on the direction is of non- 
local nature and hence cannot be removed a priori by some change of 
metric. This can be easily seen from the above example or by some elemen- 
tary analysis of the behavior of the qJ' as [~[ ~ co. We would also like to 
point out that a similar phenomenon occurs, i.e., the existence of traveling 
waves which depend nontrivially on the direction, in the study of reaction- 
diffusion equations with oscillatory coefficients ~34-36' ~) or quasilinear reac- 
tion-diffusion equations with nonlinearities depending on the direction of 
the gradient of the solutions. 

The existence of qh satisfying (2.10), (2.11), and (2.13) has not been 
worked out explicitly anywhere, but it can be obtained, as we sketch below 
for the convenience of the reader, by a more or less straightforward adapta- 
tion of the results of De Masi et al. ~3~ 3,~ and Bates et al. ~3'~ 

For simplicity, below we only discuss the case h---0. When h :~ 0 one 
argues using the implicit function theorem as in Theorem 3.1 of ref. 32, 
with the appropriate modifications to deal with explicit dependence on the 
direction e. Finally, to simplify the notation in what follows, we write q and 
2 instead of qO and 2 ~ respectively. 

To this end observe that we can apply the analysis of refs. 30 and 31, 
for each fixed direction e, to the corresponding one-dimensional potentials 

](p, e) = I J (pe+y)dy  (peR)  
Ne 

where N,.= {y~  RN: y.  e=0} .  We thus obtain a standing wave q(., e) 
satisfying (2.10) and (2.11) with 2(e) the unique positive solution of the 
algebraic equation 

f l [1--m~] f J ( r ) exp ( -2 (e )e . r )dr=  1 

To study the regularity of q in e asserted in (2.13), we need to 
consider, for each e~RN\{0}, the unbounded, self-adjoint operator 
s L2(R) ~ C0(R) ~ L-~(R) r~ Co(R), Co(R) being the space of bounded 
continuous functions on R vanishing at infinity, defined by 

~ . ~ ( e ) p ( { ) = f l I J ( r ) p ( { + r . e ) d r - [ 1 - q ( { , e ) 2 ] - I p ( { )  (2.15) 

which is obtained by linearizing the standing wave equation (2.10) around 
q(., e). It follows from refs. 30 and 31 that, for each ee  RN\{0}, 

ker c~q*(e) = ker s = ~(-, e) R (2.16) 
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and that 

,.~qa(e)-t: L2( ~ ) ~  Co (~)  n ker ~ ( e )  • --* L2(R) ~ Co{ [~) 

is a bounded operator,  the last claim being a consequence of Fredholm's 
alternative. 

Next, for each e e ~ N \ { 0 }  and each i = 1  ..... N, we consider the 
solution p,.(., e) ~ L2(11~) c~ Co(R) of 

..,~(e) Pi(~, e ) =  -- f l  f J(r) ~(~ + r.  e, e )r i  dr (2.17) 

Since J is even and q is odd [recall (2.2) and (2.14)], the existence ofp~ 
follows fiom the discussion above, since 

f f  J(r) il( ~ -b r. e, e) dl(~, e ) r  i dr d~ = 0 

It also follows that p; is continuous with respect to e. Indeed, observe 
that, since (2.10) can be rewritten as 

q = tanh fl(fl( -, e) �9 q) 

if qt and q2 are the solutions of (2.10) corresponding to e~ and e 2, then 

[[ql -- q2 [[.7_ ~< C le, - e21 

with the constant C depending on __+ m/~ and the C ~-norm of J. An elemen- 
tary integration by parts with respect to r of the right-hand side of (2.17) 
together with the fact that SO(e) - j  is continuous with respect to e, 
following from the continuity of  q in e, yield the above asserted regularity 
on Pi. 

Fix now a unit vector ei e ~N and consider for p :~ 0 the finite dif- 
ference 

Q~ (~) = p - J [  q(~, e + pe,) - q(~, e)] 

which solves, as an elementary computat ion reveals, for a suitable P~', the 
equation 

s Q~ = pp 
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It follows from the symmetry properties of J and q that P~:eL2(N)c~ 
Co(~) c~ ker s • Moreover, it is also immediate that, as p --* 0, 

P~--* - f l I J ( r )  d l ( . + r . e , e ) r i d r  in L 2 n C o  

The boundedness of ~ ( e ) -  ~ now gives, in the limit p ~ 0, 

Q~/---, D,,,q =Pi in L 2 c~ Co 

The above yield that 

2JJ'(e) D, .q(( ,  e) = -- fl I J(r) dl( ~ + r. e, e) r, dr 

as well as the regularity of q in e asserted in (2.13). 
As mentioned earlier, the existence of qh satisfying (2.10), (2.11), and 

(2.13) is a very important technical tool for our analysis. It is by no means, 
however, what creates the curvature effects in the asymptotic limits, 
although the latter are expressed quantitatively in terms of expressions 
which depend on qh. Moreover, it is worth remarking that it is only (2.10), 
(2.11), and (2.13) that play a role in our analysis and not the stability 
properties of q, which require in addition to (2.16) a spectral estimate on 
~a(e). We refer the reader to the related analysis for reaction-diffusion 
equations (see, for example, refs. 1, 6, 12) and for (1.5) (see ref. 18). 
Although spectral estimates played a crucial role in the analysis performed 
for short times by a number of authors, it turns out that they play no role 
whatsoever in the approach we are using here. We refer the reader to, e.g., 
refs. 1, 6, 12, 17, and 18 for further discussion of this point. 

We continue now with the presentation of our main results, which are 
about the long-time asymptotics of (2.6) and the IPS. For the former it is 
convenient to rescale (2.6) using the parabolic scaling (r, t) ~ (e- ' r ,  e 2t). 
The effect of scaling space and time is, of course, to reproduce in bounded 
space regions and for finite times the long-time behavior of (2.6). 

For any ~ l ~ ,  let m,: be the solution of (2.6) with h = ~  and define, 
for (r, t)~ ~Nx(0,  oo), 

m':(r, t)=m,:(e Ir, e-2t) 

It follows that m': solves the rescaled equation 

m 7 + e -2~(f l ( j , : ,  m': + c~e))Em': - tanh fl(J': * m ~ + o~e)] = 0 

in NNx(0, oO) (2.18) 



76 

where 

J':(l')=g NJ(g-lr) (l 'e~ N) 

Katsoulakis and Souganidis 

To state the results we also need to introduce the scalar/~: S N- ~ --, 
identified with the mobility of the interface and the matrix A(e): S N- ~ ~ ~9 ~ 
related to the surface tension given by 

and 

l t (e)=fl  ~ ( f l j , q ( ~ , e )  dr ) ( l_q2(~ ,e ) )d~  (2.19) 

A(e) = �89 f f  J(r) (1(~, e)[4(~ + r- e, e)(r@ r) + D,.q(~ + r. e, e) | r 

+ r |  + r. e, e)] dr d~ (2.20) 

Notice that if J is radially symmetric, then A(e) reduces to 0I, with 

0 = �89 f f  J(r) 0(~) 0(~ + r. e)(r |  r) dr d~ 

Next define the matrix A: aN\{0} X ~N. . ,  ~ x  by 

A(e, X)=A(#)  X(I-- # |  ~) 

x~9 ~ ~ R g i v e n b y  and consider the function F: ~X\{0} X 

F(e, X) =/~(E)[ tr ~(#, X) + 2~n/~ [el ] 

(2.21) 

This last fact is crucial for the analysis below. It is worth remarking that 
in principle one should be able to check (2.22) by a direct computation 
without using ref. 1, as is the case for a number of other examples. This, 
however, requires a more detailed knowledge of properties of the standing 
wave, which may not be easily obtained, if at all. The theory of ref. 1 cir- 
cumvents this problem. 

if X ~  Y then F(e, X) ~< F(e, Y) (2.22) 

It follows from the general theory developed in Barles and Souganidis Ij 
that F is degenerate elliptic, i.e., for all e e  RN\{0} and X, y~seu ,  
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Consider now the initial value problem 

{ m~ + e-2q~(fl(j,,, m':+ ~e))[m ~ - -  tanh fl(J': �9 m~:+ az)] = 0 
m': =m~ on ~NM {0} 

in RNx(O, ~ )  
(2.23) 

and assume that there exists an open set s 0 c ~ N  and a closed set F o ~ R 'v 
such that ~^ '=  s o u ~ ;  u Fo and 

s {re  NN:mg >0} and F o =  {reNN: m~=0} (2.24) 

Notice that this last assumption on m~ can be easily generalized; see, for 
example, ref. 18. 

Finally, consider the geometric pde 

u, =F(Du, D2u) in I~a'x (0, oo) 
(2.25) 

U = ~ t  0 o n  []~Ux {0} 

where uo is a bounded, uniformly continuous function such that 

Fo={X:Uo(X)=O}, s s {x:uo(x)<O} (2.26) 

As discussed in Section 1, the set F , =  {xeNU: u(x, t )=0}  is by the 
definition the weak front propagation of Fo with normal velocity 

V= -p(n) [ t r (A(n)  Dn) + 2o~m/~] (2.27) 

The first main result is as follows. 

Theorem 2.3. Assume (2.8), (2.9), and (2.24) and let m': be the 
solution of (2.23). Then, as e--*0 +, m':--*rn/~ in {u>0}  and m ' :~  -m/~ in 
{ u < 0}, with both limits local uniform, where u is the unique solution of 
(2.25) with Uo satisfying (2.26). 

As mentioned in the Introduction, here we only prove Theorem 2.3 
under the assumption that the weak evolution of Fo with normal velocity 
(2.27) is smooth. Theorem 2.3 is proved for the weak evolution in ref. 1. 

To state our result for the IPS, if u is the solution of (2.25), for t > 0, 
we define the sets 

P','= {xe ZA': u(~,efl,) x, t) > 0} 

N},'= {x e 7/N: U()/~() ~) X, t) < 0} 

u ), y M~..,= {xeZ,A,': x ieP,  ~ N,} 
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The result is as follows. 

T h e o r e m  2.4. Assume (2.8), (2.9), and (2.24). Under the assump- 
tions of Theorem 2.1 on the initial measure, there exists a p* > 0 such that 
for any e(),) such that ) '-P*e(7)~ +Go, as 7 ~ 0 ,  and, limit locally 
uniformly for t > 0, 

J t  

glti' i~=l t '  
lim sup a,,:~r~-_,(x i) - m/~ I-I ( - 1 ) = o 
~,-o .,.~ M';.., iE Nit 

Theorem 2.4 follows from Theorem 2.3 in the same way as the 
analogous theorem in ref. 18; we therefore do not present its proof here. 

We conclude this section with a discussion about the history of this 
problem as well as the meaning of our results. 

To our knowledge, Theorems 2.3 and 2.4 are the first rigorous results in 
a nonequilibrium setting where an anisotropic macroscopic equation (1.6) as 
well as a Green-Kubo formula for the direction-dependent transport matrix 
(2.20) and mobility (2.19) are derived from mesoscopic and microscopic 
dynamics, namely (2.6) and the underlying stochastic Ising model. 

As already mentioned, a result analogous to Theorem 2.3 was obtained 
for the case of Glauber dynamics (see (1.5)) and for potentials case, i.e., 
when J ( r ) = J ( I r ] ) ,  first under the assumption that the evolving front 
remains smooth in ref. 15 and later extended past all possible singularities 
by us in ref. 18. In this case it turns out that the limiting motion is governed 
by (2.27), where V= - /~0 tr Dn, where the constants 0 and/ l  are given by 

ff J(Irl)  q(~ + e- r) 0(~)(~. ,.)2 dr cl{ 0 

and 

p = f l f ( 1 - q ~ - ( ~ ) )  L qZ(~)d~ 

where e, 0 are any two orthogonal vectors in S N -  |. Note that due to the 
symmetry of J, both 0 and p are independent of the particular choice of e 
and 0. In addition, q is the direction-independent traveling wave corre- 
sponding to the symmetric J. 

One may simplify (1.5) by substituting Jz (Am - m )  for the convolution 
t e r m  J * m (see, for example, Penrose1371), where ]2 = ~ J([r[) [r[ 2 dr or even 
additionally linearize the hyperbolic tangent, thus obtaining a Ginzburg- 
Landau equation (1.1). It is known ~38' ~2.6~ that in the isotropic case both 
simplified models have the same qualitative asymptotic behavior as (2.6) 
though with different transport coefficients. In the anisotropic case, 
however, this picture is no longer true. The second-order approximations 
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described earlier still give, in the limit e ~ 0, isotropic motion by mean cur- 
vature with a constant transport coefficient, while (2.6), according to our 
analysis, should yield the anisotropic equation (2.23) with the Green-Kubo 
formulas (2.19) and (2.20). It appears that anisotropy is a higher order 
effect which cannot be accounted for only with second-order approxi- 
mating equations. This phenomenon is also pointed out by Caginalp and 
Fife, 139) who, depending on the type of anisotropy expected, "correct" (1.4) 
by suitably adding higher order derivatives. 

Fronts moving with normal velocity given by (2.27) can also be 
obtained at the scaled limit of monotone threshold dynamics, t4~ which can 
be thought of as deterministic analogues to Ising models. 

3. THE PROOF OF THEOREM 2.3 

As mentioned earlier, here we prove Theorem 2.3 under the additional 
hypothesis that 

Fo is smooth (3.1) 

which yields, by classical arguments, that there exists T > 0 such that 

the evolution F, of F 0 according to (2.27) is smooth for t ~ [0, T] (3.2) 

Here we only present the argument for ~ = 0; the general case follows 
by replacing a by a + 0~ in the proof below. 

Let u be the solution of (2.25) with uo satisfying (2.26) and define the 
signed distance d to _F, by 

~d(r,F,) if re{r'eRN:u(r',t)>O} 
d(r't)=~-d(r,F,) if xe{r'eRN:u(r',t)<O} (3.3) 

where d(x, B) is the usual distance from x to the set B. Then (3.2) is quan- 
tified by saying that, for some fixed e > 0 and rio > 0, 

d,, Dd, Od,, D2d~ C~(RNx (0, T+e))n {(r, t): Id(r, t)l <60} (3.4) 

Finally, throughout this section we will assume that the system starts 
at a local equilibrium, i.e., that 

m'=q(e-tdo, Ddo) on R ~ x  {0} (3.5) 

do is the signed distance to To. This additional assumption can also be 
removed. We refer to refs. 1, 6, 17, and 30 for such arguments. Recall that 
for simplicity we write q instead of qO. 

822/87/I-2-6 
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The proof of Theorem 2.3 relies on the construction of suitable super- 
and subsolutions of (2.23), which, as e ~ 0 +, drive the solution of (2.23) to 
+ma in the appropriate regions of the (r, t) space. A similar approach was 
taken in refs. I, 6, I2, and 42 for the study of the asymptotics of reaction- 
diffusion equations. 

A crucial part in the construction of super- and subsolutions of (2.23) 
is played by lower order corrector terms, the existence of which leads to the 
identification of the matrix A(e)  and the coefficient/t(e). Notice that the 
transport matrix/x(e) A(e) does not appear in (2.23). It arises as a result of 
an averaging effect, in the limit e ~ 0 +, due to the highly nonlinear form 
of the equation as well as its nonlocal character. 

More precisely, but still heuristically, our super- and subsolutions will 
be of the form 

q(e - 'd(r ,  t), DdO, t) ) + eQ(e - 'd(r, t), Dd(r, t)) + O(e z) 

Q is the corrector, which is identified by solving an appropriate "cell" 
problem. As usual, it is the condition guaranteeing the solvability of the cell 
problem that yields the result. 

To this end, for aeffL e ~ U \ { 0 } ,  and e>0 ,  let q~=q~'(~, e) be the 
traveling wave corresponding to 

rn, + r , m + ae) )[m - tanh[fl(J �9 m + ae) ] ] = 0 

with speed c"(e)  satisfying (see, for example, ref. 30) 

c(a, e) := lim e-tc~ = 2ampll(e) 
~ : ~ 0  + 

in ~'Vx(O, ~ )  

(3.6) 

(3.7) 

with/~(e) given by (2.19). 
Next fix ~ S  A' and d e ~ .  

x ~'v\{0} ---, ~ is the unique solution of 
A corrector Q': = Q"(r e): 

5fl,,~.(e) Q,: = ddl,,, # ( f l ( j  , qa~. + ae)) 

x [1 - (q"~'+c"~'(e)(#( f l (J .  q ' + a e ) ) ) - '  0~') z] 

" f "(")t +"' e, ")  

+ tr ([ (D, .q ' (~  + r' .  e, e) | r' 

+ r' |  + r  ' .e, e))] .~)] dr' (3.8) 
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which is such that 

{ Q~(0, e) = 0, IQ~(~,e)l<~Ce -~1r , IQ~(~,e)l<~Ce -~1r 

for some positive constants C and 2 (3.9) 

Dr Q~ is continuous 

In the above equation ~Q~'(e), which is the linearization around qU~ of the 
equation satisfied by qU% is given by 

I ~ '( f l (J~*q~"+ae))j~ ] =Lp<,~(e) O = c,~(e) ~ ( f l ( j .  qO~ + ae)) Q-  ~(fl(j~ �9 qO,. + ae)) * (t"~Q 

+ ~(/7(J �9 q"~ + ae)){ a - [ 1 - (q" + c ' (e)  

x (~ (# (J  �9 q~" + ae))) -i  0,,)2] 

xfl I J(r' ) Q(~+r'e, e) dr' (3.10) 

It follows (see, for example, the discussion in Section 2) that 

ker(~Q':(e)) * = ker L#~(e) = 0~'(-, e) R 

Hence the existence of such a Q~ follows from Fredholm's alternative, 
provided the right-hand side of (3.10) is orthogonal to the kernel of the 
operator ~'~'(e). This leads to the compatibility condition 

d = tr r A~(e) 

where 

A~(e) = �89 I f  J(r) gl"~(~, e)[q"(~ + e.r ,  e) r |  

+ Deq":(~ + e.r ,  e ) |  + r Q  D,.q':(~ + e . r ,  e)] dr d~ 

p~(e) =fl  I (  I (~':(~, e))2x {~(fl(J* q~ 

) ]  x [1 - (q '~ '+c ' : (e)(~( f l (J* q " + a e ) ) ) - '  0"(~, e))2]} -~ d~ 

Notice that, as e--* 0, 

W ( e ) ~ A ( e )  and /x~(e) -*/x(e) in N~v\{0} (3.11) 
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Furthermore, as we will see later, ~ will be chosen to be D2d(r, t), hence 
Q': will depend on (r, t). Since d satisfies (3.4), it follows that there exists 
a positive constant C such that 

Ia ,  l + l O r a ~ l ~ C  (3.12) 

We now introduce super- and subsolutions for (2.23), refining ideas of 
refs. 6, 12, 17, 18, etc., with the use of the appropriate correctors defined 
earlier. We begin with some preliminary constructions. 

For fixed c5 and a, let u '~'' be the solution 

{u~ , " -F(Du6"" ,D2u6 ,~) -c (a ,  Du ~'~ IDun'~ = 0  in RNx (0, or) 
(3.13) 

u'~'"(r, 0) =do(r) +c~ on R'Vx {0} 

Set F~,'"= {r: u'~'"(r, t )=0}  and let d'~'"(r, t) be the signed distance from 
/ ' - ~ .  a .  

Since d satisfies (3.4) in [0, T], there is a o > 0  such that for all 
a ~ ( - a o ,  ao), d '~'u satisfies (3.4) in F0, T+e) .  Furthermore, we have 

d6, ' '  - / ~ ( D d  ~" ~) tr{ A (Dd  '~" ") D2d '~' ~} - c(a, Dd ~̀" a) = 0 

on 1~ ~'' (3.14) 

d~"  - l t ( D d  ~" ") tr{ A(Dd  '~' ") D2d "" "} --  c(a, Dd '~" o) = O( Id"" "1) 

on {[d"'"l < 60} (3.15) 

We now define our candidate U =  U(r, t) for the super- and subsolu- 
tion of (2.23). 

If Id '~" "1 ~< ~ ~< 80/2, set 

U(r, t)=qa~(e-ld'~'~ t), Dd~'~(r, t) ) + eQ~(e-l d'~'~(r, t), Dd~'"(r, t) ) 

(3.16) 

If d'~'">6, we extend U so that it is uniformly continuous in (r, t), 
continuously differentiable in t, and satisfies, uniformly in e, 

IU(r, t)-m'~f" +l ~ a m a x e - a " " ' 6 / ~ ' ) + o 6 ( 1 )  in {d'~'">8} (3.17) 
IU, I <<, C 

Here 

/ ] ' m i n  = min 2(e) and a m a  x = max a(e) 
lel = I lel = I 
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where a and 2 are defined in (2.11) for h = O. Similarly, we extend U when 
d '~'"< - 6  by requiring that 

[U(r, t ) -  m~':"-1 ~am.,• (3.18) 

We can now state and prove the key lemma leading to the proof of 
Theorem 2.3. 

k e m m a  3.1. The function U defined in (3.16) is a supersolution 
(respectively sub-) of (2.23), (3.5) if a is positive (respectively negative). 

Proof .  1. e only argue for a > 0. 

2. If r e  { d ' ~ ' " > 6 } ,  then, for e uniformly small, 

U(r, O) >_.m~[" + - a  . . . .  e-;'~'"~/':) > m/~ > m(r ,  O) 

Similarly, if r e {d  '~" < - 6} ,  U(r, 0) >~ m(r, 0). If r e {Id ~' "1 ~ 6}, using the 
properties of q and q':,  we obtain, for e sufficiently small, 

U(r, O) = q"~(e - t (do ( r )  + c~), Odo(r) )  >1 q ( e - l ( d o ( r ) ) ,  Ddo(r) )  

Hence 

U(. ,  O)>1 m ( . ,  O ) =  q (d  o, Ddo) 

3. Next we show that U is a supersolution of (2.23) in {d6'">8} w 
{d '~ ' "< - 6 } .  Using the fact that J has compact support, we obtain, for 
uniformly small, that 

>1 -- C + e -2q~( f lJ  ': * U)[m~[" + + O(e -~m*c~/':)) 

- tanh(flYm~':" + + O(e-~'i"~/':~))] 

= - ' C +  e-2q~( f lJ  ~ * U ) [ t a n h ( f l Y m ~  ~'+ + ae) 

- tanh(flJm~7:" + ) + O ( e -  z.,,.l~m)] 

>1 - C +  e -  2cl'(flJ ': * U)[ tanh'(fl]m~ ~" + ) ae + O( e z) + O( e -  ;'n''l~m) ] 

> 0  
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4. If [d~'"(r, t)[ <~,  then, since q"~ is a traveling wave solution of 
(3.6) with speed :(a,  e), 

U, + e-2~b(flJ~ �9 U)[ U -  tanh J~ �9 U] 

- i  .,,~. ,~,,  - , ~ ( f l j ~ .  , =e q d, +e U) Q ~ 

+ Oeq"~Od~ "~ + Q~d~, �9 + e.O e Q~Dd~'" + eat - e -2c"~(e) 

X qa~ 
�9 (fl(J~" * q"~ + ae) 

+e-2~(flJ~' .  U ) { t a n h f l [ f  J(r')q"~(e-]d'~.~+er',e)dr'+ae 1 

- t a n h  fl[ ~ J(r')(q"~(e-ld'~'"(r + er"r)'Dd'~'"(r +er', t)) 

+eQ':(e-lda'"(r+er ', t),Dda'O(r+er ', t ) , r+er ' , t ) )dr ' ] }  

where we denote by e the gradient Dd'~'"(r, t) and whenever we evaluate a 
function at (r, t) we omit the arguments. 

5. Call (7" the term in the curly bracket in the equation of Step 4. 
Expanding tanh to second order, we obtain 

C =  tanh' [fl ( I  J(r ' )q"~'(e- td~'"+er ' ,e)dr '+ae)l .  D~ + tanh"(() �9 (D~.) 2 

where 

= fl f J(r ' )[  q"~(e- td~'" + el", e) D e 

--q':(e-l  d~'"(r + er ', t), Dd'~'"(r + er ', t))] dr 

+ flae - eft ~ J(r') Q':(e - ld'~" "(r + er', t), Dd ~' "(r + er', t), r + er', t) dr' 

= B ~. _ e E  ~. 

6. Using (3.4) and the properties of the corrector Q~', we find that 

E~= fl f J(r') Q~'(e-l da'~ + er ' + O(e), e+ O(e), r + er', t) dr' 

= fl f J(r') Q'(e-Ida" "+ er', e, r, t) dr'+ O(e) (3.19) 
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B~= fl f J(r') [ q~ +e,.', e ) 

_qO~. e- ld~. ,  +er, +~(D2d,~.,r, ' r') 

+ O(e2), e + eD2d"'"r' + O(~Z))] dr' + flae (3.20) 

where the O(e) and O(e 2) terms depend only on c and the constants in 
(3.4). 

Expanding q to second order, we obtain 

B ' : = f  J(r ')  gl"~'(e-ld~'"+e.r',e) -~(D2da'~'r',r')+O(e 2) 

+D~q"~'(e-ld'~'~+er ', e)(eD2d'~'~r')} dr' + f a e +  O(e'-) (3.21) 

Combining (3.19) and (3.21) yields that 

D ~ =  O(e) 

7. Using this last fact as well as (3.19) and (3.20) and 

tanh'(J  * q) = 1 - tanh2(J �9 q) 

we obtain 

C" = [ 1 - (q"~ + c~ qr~(fJ �9 q ' : ) ) - '  q"~) 2 ] 

x {fl~ f J(r') oo~(e-td'~,a +e .r ' ,  e)(D2d'~,"r',r') dr ' 

+ fae + fie f J(r') D,,q~ ~ + e. rt~ e) D2d ~, g.l~l dr' 

�9 --flit f J ( r ' ) O ' ( t - ' d  '~'~ + e.r ' ,  e, r, ,)dr' + O(t2)} + O(t 2) 

Using that �9 is Lipschitz and subsequently expanding J~ �9 U as in (3.20) 
and (3.21), we get that 

�9 ( f J ' :  �9 u )  = ~ ( f J ~  �9 q~ + o(~) 



86 Katsoulakis and Souganidis 

Going now all the way back to the equation of Step 4, we obtain 

U,+ e-2cl)(flJ ": �9 U)[ q ) - t a n h  flJ': , U] 

= e - '  [4~176 q'~)(1 - {q"':+c':(e)[q~(flJ* q"~)] - '  0(":} 2) 

x {~  f J(r')[ q ' : (e- t  d'*.O + e . r', e)(D2da."r', r ') 

+ 2Deq': (e-  l da'" + e �9 r', r') D2d'~" "r ' ] &" 

- fl f J(r') Q~(e- 'd  '~'' + e .  r', e, r, t) dr' + fla + O(e)}  

+ ~ ( f l j . q , , , , )  Q,:e_,d ,~. (e)  ~(flJ': * U) 1 
qs(fl(J ~ �9 q": + ae)) (1": 

at"  ~ a " r .  6 a r 6 a c +[D, .q  Dd," + Q d , "  +eD~,QDd, '  + e Q , ] + O ( 1 )  

8. Recall the definition of Q': through the cell problem (3.8), where 
= DZd(r, t) and d = tr{p':(Dd a' ") A~'(Dd '~" a) D2d ~. ,,}. Then 

U, + e - Z ~ ( f l J ,  m)[ U -  tanh J ' : ,  U] 

= e - '  {0":[ d; ~'" - tr p':(Dd '~'") A~(Dd '~ ") D2d '5"" 

--c(a,  e ) +  ( c(a, e ) -  e -  ' c(":(e) ) ] + fla + O(e) 

- c':(e) [ q~(flJ * q"~') Q': 

�9 ] } - - - J . q " : Q  +O(e)  +O(1)  

Since, as e -~ 0, 

e - l c " ( e ) ~ c ( a , e ) ,  A ' : ~ A ,  l t ~ ~ l t  

and 

Id, ~'(' - p( Dd ~" ") tr{ A( Dd '~" ") D2d '~ "} - c ( a ,  Dd ~' ")l = O( Id ~' "[)~< 0(6) 

for e, 6 small, the right-hand side of the last equality is positive, thus U is 
a supersolution of(2.23) in {Id'~'"[ <6}.  l 
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We conclude with the following. 

Proof of  Theorem 2.3. 1. Pick (ro, t o ) ~ R N x [ O , T )  such that 
u(ro, to)= - 7  < 0, where u solves (2.25). The stability of solutions for pde's 
of the type (2.23) yields that u 6 " ~  u locally uniformly in RtCx l-0, T) as 
fi, a ~ 0. Therefore, for sufficiently small d; and a, we have 

u '~' ~(ro, to) < - e/2 < 0 and d '~" "(ro, to) < 0 (3.22) 

2. Lemmas 2.2 and 3.1 yield 

U>~m~ >_, - m / j  

which combined with (3.22) yields 

in ~Nx [0, T) 

lim m~(ro, to)= lim ~(r  o, to)= -m/~ 
C ~ 0  + ~ : ~ 0  + 

. Using a subsolution constructed as in Lemma 3.1, we see that 

lim m':=m/~ in {u>0} II 
r  

Remark. Notice that the above proof does not quite work for the 
Metropolis dynamics, since in (3.10) we used the differentiability of ~. 
However, we may mollify the singularity of the Metropolis dynamics at 0 
by introducing a new small parameter (. Then we may proceed in the proof 
of Theorem 2.3, using the stability of Eqs. (2.21) and (2.23) and letting first 
( -~ 0 and then e --, O. 
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